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Abstract
We present a method for the calculation of dynamical correlation functions of quantum impurity
systems out of equilibrium using Wilson’s numerical renormalization group (NRG). Our
formulation is based on a complete basis set of the Wilson chain and embeds the recently
derived algorithm for equilibrium spectral functions. Our method fulfils the spectral weight
conserving sum-rule exactly by construction. A local Coulomb repulsion U > 0 is switched on
at t = 0, and the asymptotic steady-state spectral functions are obtained for various values of U
as well as magnetic field strength H and temperature T . These benchmark tests show excellent
agreement between the time-evolved and the directly calculated equilibrium NRG spectra for
finite U . This method could be used for calculating steady-state non-equilibrium spectral
functions at finite bias through interacting nanodevices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding the influence of the environment on the non-
equilibrium dynamics of quantum systems remains one of
the challenging questions of theoretical physics. A finite
number of quantum mechanical degrees of freedom—an orbit,
a spin or a qubit—interacting with an infinitely large bath of
non-interacting bosons or fermions with a continuous energy
spectrum represents a typical class of model examples for such
systems.

These quantum impurity models appear to be at the heart
of a variety of different physical problems. Traditionally, they
were used to describe the interaction of magnetic impurities
within a metallic host [1] or to investigate the dissipation
in quantum mechanics [2]. These models have contributed
immensely to our understanding of the low-temperature
properties of single-electron transistors [3, 4] and the tunneling
spectroscopy of adatoms on metal surfaces [5, 6]. In addition,
within the dynamical mean-field theory [7, 8] or its cluster
extensions [9] lattice models for strongly correlated fermions
have been mapped onto quantum impurity problems embedded
in a fictitious, self-consistent bath.

Many approaches to non-equilibrium are based on the
Kadanoff–Baym [10] and Keldysh [11] techniques. At some
time t0 = 0 a closed system characterized by a density
operator ρ̂0 evolves according to the Hamiltonian H(t). The
immense difficulty of treating the real-time dynamics of
quantum impurity systems stems from the need to track the full
time evolution of the density operator of the entire system—
environment plus impurity. The Kadanoff–Baym and Keldysh
techniques [11, 10] provide an elegant platform for perturbative
expansions of the density operator. One of the building blocks
of such perturbative expansions are non-equilibrium Green
functions. These non-equilibrium Green functions also contain
information on the transients as well as the steady-state which
might be reached in the long-time limit for a time-independent
Hamiltonian. In general, however, perturbative approaches are
plagued by the infra-red divergences caused by degeneracies
on the impurity, making them inadequate for tackling the
change of ground states of quantum impurity models [12].

In this paper, we present a different approach for the
calculation of non-equilibrium Green functions of quantum
impurity problems. We make use of Wilson’s numerical
renormalization group (NRG) method [12, 13] and its recent
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extension to non-equilibrium dynamics [14, 15]. Spin–
spin non-equilibrium spectral functions obtained by NRG
calculations were investigated first by Costi about ten years
ago in the context of the spin-boson model [16]. Here, we
are interested in the evolution of fermionic spectral functions.
We address this problem with a different approach using the
complete basis set of the Wilson chain [12, 13] derived in
the context of the time-dependent numerical renormalization
group [14, 15] (TD-NRG). It has already been successfully
applied to derive sum-rule conserving equilibrium Green
functions [17, 18].

We focus on a quantum impurity system characterized by
the thermodynamic density operator ρ̂0 ∝ exp(−βHi) for
times t ′ < 0. It evolves with respect to the Hamiltonian
Hf for times t ′ � 0. We will derive a closed analytical
formula for any non-equilibrium Green function G(t, t ′) for
times t, t ′ > 0 given a time-independent Hf. In contrast to
the equilibrium Green functions [18, 17], transitions between
different energy shells require a double summation over pairs
of Wilson shells (m, m ′). In section 2.2, we prove that this
summation can be cast into a recursion relation involving two
different reduced density matrices instead of the single one
used in the algorithm for equilibrium Green functions [18, 17].
It can be seen analytically that only one of these two reduced
density matrices contributes if Hi = Hf: the equilibrium
algorithm [18] is recovered. Therefore, the presented approach
to non-equilibrium spectral functions embeds the equilibrium
case [18, 17] as well.

We will heavily make use of this algorithm in another
publication [19] on the current–voltage characteristics of
interacting nanodevices. In that paper, we will derive a
numerical renormalization group approach based on scattering
states to describe current-carrying open quantum systems. In
this formulation, the current at finite bias is determined by the
steady-state non-equilibrium (NEQ) spectral function [20–23]
which depends on the density operator of the full system. At
finite bias, however, the NEQ density operator is only known
analytically for Hamiltonians which commute with the number
operators of left and right-moving electrons [21, 24], i.e. for
non-interacting quantum impurities. This analytically known
operator ρ̂0 must be evolved into the unknown NEQ density
operator ρ̂ after switching on a finite Coulomb repulsion U .

We have used the single-impurity Anderson model
(SIAM) [25, 26] for benchmarking our algorithm. We have
restricted ourselves to changes of local parameters of the
quantum impurity at t0 = 0. Consequently, the system
has evolved with respect to the full Hamiltonian Hf. For
an infinitely large bath, it is expected [10, 11, 24] that the
initial ρ̂0 ∝ exp(−βHi) evolved into the new thermodynamic
density operator of the fully interacting problem described
by Hf for times t → ∞, unless it is prohibited by
some conservation law [24]. This is the basic underlying
assumption of the perturbation theory in the Coulomb
interaction U [27–29]. Therefore, the steady-state spectral
function obtained from a time-evolved density operator should
be equivalent to the spectra obtained directly by an equilibrium
NRG calculation [25, 26, 18, 17].

We will use this comparison between both spectra as
the benchmark for our algorithm in section 3. We will

demonstrate excellent agreement between these differently
calculated spectral functions for switching on the local
Coulomb repulsion U from U = 0 to a finite value at various
temperatures and local magnetic fields.

2. Theory

Interacting quantum dots, molecular junctions or other
nanodevices are modeled by the interacting region Himp, a set
of non-interacting reservoirs Hbath and a coupling between both
subsystems HI

H = Himp + Hbath + HI . (1)

We assume that the system is in equilibrium at times t < 0,
and its properties are determined by the density operator ρ̂0.
One possible choice would be HI = 0, which is usually the
starting point of perturbative approaches based on the Keldysh
formalism [11]. However, this is not required by our method.
We only demand that the initial density operator can be cast
in the form ρ̂0 = exp(−βHi)/Z , where Hi can be the initial
Hamiltonian of the system in thermodynamic equilibrium for
times t < 0.

At t0 = 0, we suddenly switch from the Hamiltonian
H = Hi to H = Hf. The retarded two-time Green function,

Gr
A,B(t, t ′) = −iTr

[
ρ̂0[ Â(t + t ′), B̂(t ′)]s

]
�(t)

= −iTr
[
ρ̂0(t

′)[ Â(t), B̂]s

]
�(t), (2)

contains information on the correlated dynamics of two
operators Â and B̂, where

ρ̂(t) = e−iHft ρ̂0eiHft (3)

Ô(t) = eiHft Oe−iHf t . (4)

For fermionic operators the anti-commutator is used for
[ Â(t), B̂]s while for bosonic operators [ Â(t), B̂]s represents a
commutator. Equation (2) indicates that we can interpret such
a two-time Green function as evolving the density operator of
the system from τ = 0 to the time τ = t ′, and calculating the
correlation function of B̂ and Â with respect to the relative time
t > 0. We expect that when changes are restricted to the local
part of the Hamiltonian, i.e. Himp + HI, a steady state or even
a new thermodynamic equilibrium [10, 11, 21, 24] is reached
for times larger than the largest characteristic timescale of the
system. In these cases, the limit

ρ̂∞ = lim
t ′→∞

ρ̂(t ′) (5)

exists. Equation (2) becomes independent of t ′, and G(t, t ′)
only depends of the relative time t in the steady-state limit.

2.1. Complete basis set

Wilson’s NRG method is a very powerful tool for accurately
calculating equilibrium properties of quantum impurity
models. Originally developed for treating the single-
channel, single-impurity Kondo Hamiltonian [30, 12], this
non-perturbative approach was successfully extended to the
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Anderson impurity model [25, 26], and to the two-channel
Anderson [31] and Kondo Hamiltonians [32, 33]. Recently,
it was extended to equilibrium properties of impurity models
with a bosonic bath [34, 35], non-equilibrium dynamics of
the spin-boson model [15, 36] or even combinations of both
fermionic and bosonic baths [37].

At the heart of this approach is a logarithmic discretization
of the continuous bath, controlled by the discretization parame-
ter � > 1; the continuum limit is recovered for � → 1. Using
an appropriate unitary transformation [12], the Hamiltonian is
mapped onto a semi-infinite chain, defined by a sequence of
finite-size Hamiltonians Hm with the impurity coupled to the
open end. The iterations are terminated at a finite value of
m = N which defines the Wilson chain of finite length N .
The finite-size Hamiltonian Hm acts only on the first m chain
links of the Wilson chain. The length N also determines the
temperature TN ∝ �−N/2 for which the spectral functions are
calculated. For a detailed review on this method see [13].

Recently, a complete basis set for such a Wilson chain of
length N has been identified [14, 15]. The set of eigenstates
of Hm can be formally constructed from the complete basis
set {|αimp, α0, . . . , αN 〉} of the NRG chain of length N where
the αi label the configurations on each chain link i . Since Hm

does not act on the chain links m + 1, . . . , N , an eigenstate
|r〉 is written as |r, e; m〉 where the ‘environment’ variable e =
{αm+1, . . . , αN } encodes the N − m site labels αm+1, . . . , αN .
The index m is used in this notation to record where the
chain is partitioned into a ‘subsystem’ and an ‘environment’.
After each iteration the eigenstates of Hm states are divided
in ‘discarded’ and Ns ‘kept’ states. The standard NRG
proceeds to the next iteration m + 1 using only the kept
states. It was proven [14, 15] that the discarded states from
all NRG iterations, i.e. {|l, e; m〉dis} also form a complete basis
set. Regarding all eigenstates of the final NRG iteration as
discarded, one can formally write the Fock space of the N-site
chain in the form FN = span{|l, e; m〉dis}, and the following
completeness relation holds:

N∑
m=mmin

∑
l,e

|l, e; m〉dis dis〈l, e; m| = 1. (6)

Here the summation over m starts from the first iteration
mmin at which a basis-set reduction is imposed. All traces
below will be carried out with respect to this basis set.
Hence, the evaluation of the spectral functions will not involve
any truncation error. Note also that we made no reference
to a particular Hamiltonian H in constructing the basis set
{|l, e; m〉dis}.

At each iteration m, the Fock space FN of a Wilson chain
with fixed length N is partitioned by all previously discarded
states

1−
m =

m−1∑
m′=mmin

∑
l′ ,e′

|l ′, e′; m ′〉dis dis〈l ′, e′; m ′|, (7)

and all states present r at iteration m

1+
m =

N∑
m′=m

∑
l′ ,e′

|l ′, e′; m ′〉dis dis〈l ′, e′; m ′|.

=
∑
r,e

|r, e; m〉〈r, e; m|. (8)

We will make extensive use of the completeness relation

1 = 1−
m + 1+

m (9)

in the following section.

2.2. Derivation of the NRG non-equilibrium Green function

For the moment, we will consider only the first term of
the commutator of the retarded Green function I (t ′, t) =
Tr

[
ρ̂(t ′) Â(t)B̂

]
. If the operator Ôt = Â(t)B̂ were a ‘local’

operator, i.e. an operator which only acts on impurity degrees
of freedom or a Wilson chain of length mmin up to which all
states are still maintained, we could use the TD-NRG [14, 15]

to calculate the time evolution of Ot (t ′) = Tr
[
ρ̂(t ′)Ôt

]
.

In general, the time evolution of a local operator Ô
leads to an operator Ôt which acts on all chain degrees of
freedom. Each operator Ôt can always be expanded in outer
products of all many-body states spanning the Fock space.
Here, we will restrict ourselves always to a many-body Fock-
space basis which is an approximate eigenbasis of the Wilson
chain Hamiltonian. For the application of the TD-NRG, we
require that the matrix elements of Ôt remain diagonal in and
independent of the environment degrees of freedom e, e′

〈r, e; m|Ôt |s, e′; m〉 = δe,e′ Om
rs(t). (10)

Then the operator qualifies as a local operator, as defined
in equation (21) of [15]. We insert the completeness
relation equation (9) between Â(t) and B̂ and obtain the two
contributions

〈r, e; m| Â(t)B̂|s, e′; m〉 = 〈r, e; m| Â(t)(1+
m + 1−

m)B̂|s, e′; m〉
=

∑
k,e′′

〈r, e; m| Â(t)|k, e′′; m〉〈k, e′′; m|B̂|s, e′; m〉

+
m−1∑

m′′=mmin

∑
l′′ ,e′′

〈r, e; m| Â(t)|l ′′, e′′; m ′′〉dis

× dis〈l ′′, e′′; m ′′|B̂|s, e′; m〉. (11)

Restricting the operators Â and B̂ to local operators, the first
term remains diagonal in e, e′ [15]. In the second term, we
again make use of equation (9), but partitioning the Fock-space
of the Wilson chain with respect to iteration m ′′:

〈r, e; m|(1+
m′′ + 1−

m′′) Â(t)|l ′′, e′′; m ′′〉dis

× dis〈l ′′, e′′; m ′′|B̂(1+
m′′ + 1−

m′′)|s, e′; m〉
= 〈r, e; m|1+

m′′ Â(t)|l ′′, e′′; m ′′〉dis

× dis〈l ′′, e′′; m ′′|B̂ 1+
m′′ |s, e′; m〉

=
∑
k1,e1

∑
k2,e2

〈r, e; m|k1, e1; m ′′〉〈k1, e1; m ′′| Â(t)|l ′′, e′′; m ′′〉dis

× dis〈l ′′, e′′; m ′′|B̂|k2, e2; m ′′〉〈k2, e2; m ′′|s, e′; m〉
=

∑
k1,e1

∑
k2,e2

〈r, e; m|k1, e1; m ′′〉Am′′
k1,l′′ e

i(Em′′
k1

−Em′′
l′′ )t

δe1,e′′

× Bm′′
l′′,k2

δe2,e′′ 〈k2, e2; m ′′|s, e′; m〉 . (12)

Note that 1−
m′′ |s, e′; m〉 = 0 holds for m ′′ < m, and the

indices k1 and k2 include all states present at iteration m ′′ as
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seen from the definition of 1+
m′′ in equation (8). The locality

of the operators Â and B̂ has been used and leads to the
condition e1 = e2. Since m ′′ < m, we can partition the
environment degrees of freedom e1 into e1 = (ẽ1, e′

1) where
e′

1 labels the Wilson chain degree of freedom starting from
chain link m + 1. We obtain only non-zero matrix elements
〈r, e; m|k1, e1; m ′′〉〈k2, e1; m ′′|s, e′; m〉, if e = e′

1 = e′.
Therefore, equation (10) holds, and the matrix elements in
equation (12) are independent of e.

Consequently, the operator Ôt = Â(t)B̂ qualifies as a
local operator in the sense of the TD-NRG [14, 15] for each
time t , and I (t ′, t) is given by the fundamental equation of the
TD-NRG, equation (3) in [14],

I (t ′, t) =
N∑

m=mmin

trun∑
r,s

ei(Em
r −Em

s )t ′
Om

r,s (t)ρ
red
s,r (m). (13)

Here Om
r,s (t) = 〈r, e; m| Â(t)B̂|s, e; m〉 is independent of e,

and the reduced density matrix ρred
s,r (m)

ρred
s,r (m) =

∑
e

〈s, e; m|ρ̂0|r, e; m〉 (14)

is given in the NRG basis of Hf. At each time t ′, the spectral
information is encoded in the time evolution of Ô(t).

Inserting equation (11) into equation (13) yields two
terms. The first contribution to I (t, t2) remains diagonal in
the iteration index m and is given by the following expression

I1(t
′, t) =

N∑
m=mmin

trun∑
r,s

∑
k

ei(Em
r −Em

s )t ′
Am

r,kei(Em
r −Em

k )t

× Bm
k,sρ

red
s,r (m). (15)

The restricted sum
∑trun

r,s requires that at least one of those
indices r, s labels a discarded state at iteration m. The second
contribution to I (t ′, t) = I1(t ′, t) + I2(t ′, t), I2(t ′, t), contains
a double summation over the iteration indices m and m ′′

I2(t
′, t) =

N∑
m=mmin

trun∑
r,s

m−1∑
m′′=mmin

∑
e

ei(Em
r −Em

s )t ′

×
∑
l′′,e′′

〈r, e; m| Â(t)|l ′′, e′′; m ′′〉dis dis〈l ′′, e′′; m ′′|B̂|s, e; m〉

× 〈s, e; m|ρ̂0|r, e; m〉 (16)
which prevents a simple evaluation of the matrix elements of
Â and B̂ . Now, we insert equation (12) into equation (16) and
arrive at

I2(t
′, t) =

N∑
m=mmin

trun∑
r,s

m−1∑
m′′=mmin

∑
k1,k2

ei(Em
r −Em

s )t ′

×
∑
l′′,e′′

Am′′
k1,l′′ e

i(Em′′
k1

−Em′′
l′′ )t Bm′′

l′′,k2

×
∑
e,e2

〈r, e; m|k1, e2; m ′′〉〈s, e; m|ρ̂0|r, e; m〉

× 〈k2, e2; m ′′|s, e; m〉. (17)
The summation

∑N
m=mmin

and
∑m−1

m′′=mmin
implies that m ′′ < m.

Therefore, the summation can be arranged to

I2(t
′, t) =

N−1∑
m′′=mmin

trun∑
l′′

∑
k1

∑
k2

Am′′
k1,l′′ (t)Bm′′

l′′ ,k2

× ρ̃red
k2,k1

(m ′′, t ′), (18)

where the indices k1, k2 run over all eigenstates of Hm′′ present
at iteration m ′′, but the index l ′′ remains restricted to the
discarded states. In the last step, we have defined a second
reduced density matrix ρ̃k1,k2 (m

′′, t ′) as

ρ̃k2,k1(m
′′, t ′) =

N∑
m=m′′+1

trun∑
r,s

∑
e,e1

〈r, e; m|k1, e1; m ′′〉

× 〈k2, e1; m ′′|s, e; m〉〈s, e; m|ρ̂0|r, e; m〉
× ei(Em

r −Em
s )t ′

. (19)

Partitioning the environment variable e1 into e1 =
(αm′′+1, · · · , αm, e′), the relation

ρ̃red
k2,k1

(m ′′, t ′) =
N∑

m=m′′+1

trun∑
r,s

∑
{αi }

ρred
s,r (m)ei(Em

r −Em
s )t ′

× 〈r; m|k1, {αi }; m ′′〉〈k2, {αi }; m ′′|s; m〉 (20)

is obtained. Here, we explicitly made use of the fact that the
matrix elements 〈k2, e1; m ′′|s, e; m〉 are diagonal in e′ and e
and independent of e. The summation over e only enters the
definition of ρred

s,r (m).
Equation (20) connects ρ̃red

k2,k1
(m, t ′) to all reduced density

operators ρred
s,r (m ′) from the later iterations m ′ > m. If

ρ̃red
k2,k1

(m + 1, t ′) is given, ρ̃k2,k1(m, t ′) obeys the following
recursion relation

ρ̃red
k2,k1

(m, t ′) =
trun∑
r,s

∑
αm+1

〈k2, αm+1; m|s; m + 1〉

×
[
ρred

s,r (m + 1)ei(Em+1
r −Em+1

s )t ′] 〈r; m + 1|k1, αm+1; m〉

+
trun∑
k′ ,k′′

∑
αm+1

〈k2, αm+1; m|k ′; m + 1〉

× ρ̃red
k′ ,k′′ (m + 1, t ′)〈k ′′; m + 1|k1, αm+1; m〉 (21)

which we have obtained from equation (20). We initialize this
recursion with ρ̃red

k′ ,k′′ (N, t ′) = 0. Defining the auxiliary matrix

ρ ′
r,s(m + 1, t ′) = ρred

s,r (m + 1)ei(Em+1
r −Em+1

s )t ′

+ ρ̃k′ ,k′′ (m + 1, t ′), (22)

the recursion relation (21) has the same structure as
equation (40) of [15].

Note that the overlap matrix elements 〈k2, αm+1; m|k ′; m+
1〉 are identical to the matrix elements Aαm+1

k′ ,k2 as defined
in equation (2) of [17]. Matrix elements of this type
〈r; m|k1, {αi }; m ′′〉 can be evaluated directly using a product
of m − m ′′ such A-matrices [17].

At each recursion step ρ ′
r,s (m + 1, t ′) involves two terms

which contribute matrix elements to different sectors of ρ ′. By
construction, ρ̃k′ ,k′′ (m+1, t) has only non-zero matrix elements
for k ′ and k ′′ being both retained states of the NRG iteration
m + 1.

The restricted sum over r and s projects out the other
sectors of the matrix ρ ′

r,s (t
′) = ρred

s,r (m +1, t ′)+ ρ̃s,r (m +1, t ′)
for which at least one of the indices s, r labels a discarded
state. Instead of a single reduced density matrix, we need to
keep track of two matrices at each iteration, namely ρred

r,s (m)

and ρ̃red
r,s (m, t ′).

4
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Then, the two contributions to I (t ′, t) read

I (t ′, t) =
N∑

m=mmin

trun∑
r,s

∑
k

ei(Em
r −Em

s )t ′
Am

r,k ei(Em
r −Em

k )t

× Bm
k,sρ

red
s,r (m)

+
N−1∑

m=mmin

trun∑
l′

∑
k1

∑
k2

Am
k1,l′ e

i(Em
k1

−Em
l′ )t Bm

l′,k2

× ρ̃red
k2,k1

(m, t ′). (23)

This formally requires only a single summation over m:
the second summation over m ′ has been absorbed into the
definition of ρ̃red

k2,k1
(m, t ′). Note that the index l ′ labels all

discarded states at iteration m. Obviously, the same type of
calculation must also be performed for the second term of the
commutator in equation (2) in order to obtain all contributions
for the Green function. Fourier transformation of equation (23)
with respect to t yields the spectral information of interest.

It has to be emphasized that only energetic approximations
have been made. The NRG truncation influences the
partitioning of the states, but the completeness of the basis is
always guaranteed [14, 15]. Therefore, the spectral sum-rule
remains fulfilled exactly for each time t ′ as in the equilibrium
case [18]. It is straightforward to apply our algorithm also to
the lesser and greater Green functions G<(t, t ′) and G>(t, t ′)
as discussed in [17].

2.3. Steady-state limit

For all systems in which a time-independent steady-state
density operator ρ̂∞ is reached, equation (5) becomes
equivalent to

ρ̂∞ = lim
T →∞

1

T

∫ T

0
dτ ρ̂0(τ ). (24)

This formulation is particularly useful for a discretized
representation of an infinitely large system since artificial
finite-size oscillations are averaged out. The steady-state limit
of the two-time Green function,

Gr
∞(t) = lim

t ′→∞ Gr
A,B(t, t ′)

= −iTr
[
ρ̂∞[A(t), B]s

]
�(t), (25)

is obtained using equations (23) and (24) by noting that

lim
T →∞

1

T

∫ T

0
dτei(Em

r −Em
s )τ = δEr,Es . (26)

In the first part of equation (23) as well as in the recursion
relation (21), the reduced density matrix ρred

s,r (m) contributes
only energy diagonal matrix elements. In general, however, the
reduced density matrix ρ̃red

k,k′ will not be diagonal in the NRG
eigenbasis.

We introduce the integral L A,B(t ′) of the Fourier
transformed Green function Gr

A,B(ω, t ′) with respect to t as

L A,B (t ′) = −
∫ ∞

−∞
dω

π
Im Gr

A,B(ω, t ′). (27)

For operators Â and B̂, whose anti-commutator—commutator
for bosonic operators—remains constant, L A,B(t ′) defines a
sum-rule independent of t ′ which is fulfilled exactly by our
approach at any time t ′ due to the usage of a complete basis
set. Therefore, the averaged sum-rule

L A,B = lim
t ′→∞

L A,B(t ′) = − lim
T →∞

1

T

∫ T

0
dτ

×
∫ ∞

−∞
dω

π
Im Gr

A,B(ω, τ ) (28)

remains exactly fulfilled as well. An example would be the
single-particle spectral function obtained from equation (23)
by setting A = fσ and B = f †

σ . In this case L fσ , f †
σ
(t ′) = 1.

In fact, we used this criterion to check explicitly the sum-rule
conservation and found that it remains always within machine
precision with an error of 10−15 independent of all parameters.

A word is in order about the usage of the term ‘steady-
state’. We expect that a steady-state is always reached at long
times for a time-independent Hamiltonian [24] Hf in quantum
impurity systems. In a closed but infinite quantum system,
where only Himp + HI has been changed, the steady-state will
be identical to the thermodynamic equilibrium described by the
density operator ρ̂ = exp(−βHf)/Z f, in the sense that all local
expectation values calculated with ρ∞ and ρ̂ will be the same.
It requires that the limit limt ′→∞ limV →∞ is taken such that
t ′ � V in appropriate dimensionless units.

A steady-state rather than a thermodynamic equilib-
rium [21, 24] will be reached for an open quantum system
in the limit t ′ → ∞ [21, 24] at finite bias. Again, it re-
quires that the limit limt ′→∞ limV →∞ is taken in the correct
order. However, within a discretized representation of such a
quantum impurity system, we can never distinguish between
the approach to a true thermodynamic equilibrium and non-
equilibrium steady-state for times t ′ → ∞. Therefore, we will
always use the term ‘steady-state’ throughout the paper even
for situations where it can be proven that the corresponding
continuum limit of the model approaches the thermodynamic
limit for infinitely long times [24]. In fact, the difference be-
tween our steady-state and equilibrium spectral function will
serve as a criterion for the quality of our approach.

2.4. Recovering the sum-rule conserving equilibrium NRG
Green function

Equation (23) must contain all contributions to the equilibrium
Green function [17, 18] as well. In equilibrium, the initial
and final Hamiltonian are identical (H = Hi = Hf),
the density operator ρ̂0 commutes with H. The overlap
matrix Sr,s between eigenstates of Hi and Hf, Sr,s =
i〈s; m|r, m〉 f must be diagonal. Then, I1 contributes with
an energy diagonal ρred

s,r (N) only on the last Wilson shell
and is identical to equation (11) of [18]. For m < N ,
ρred

s,r (N) has only non-zero matrix elements for r and s
being a kept state, which are explicitly excluded by the
summation restriction. Therefore, ρred

s,r (m) contributes only
once to the reduced density matrix ρ̃red

k2,k1
(m, t ′) in the recursion

relation equation (21), namely at iteration N − 1. As a
consequence, the reduced density matrix ρ̃red

k2,k1
(m, t ′) becomes

5
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time independent in equilibrium and equal to the reduced
density matrix ρred

k2,k1
(m), i.e. ρ̃red

k2,k1
(m, t ′) = ρred

k2,k1
(m). The

Fourier transformation of I2(t ′ = 0, t) with respect to t yields
equation (16) of [18].

2.5. The non-equilibrium NRG algorithm

As in the equilibrium NRG [12], each chain length N
corresponds to a temperature TN ∝ �−N/2. For Hi and Hf,
two simultaneous NRG runs are performed in order to generate
the density operator ρ̂0 using Hi and the eigenenergies of Hf

for the time evolution. At each iteration m, we calculated the
overlap matrix Sr,r ′ (m) between all eigenstates r of H f

m and
all eigenstates r ′ of Hi

m [15]. This information, as well as the
unitary matrices diagonalizing Hi

m and Hf
m are stored. At the

end of the NRG runs, the equilibrium density matrix [12–15]
is calculated using the last iteration of H i

N :

ρ̂0 = 1

ZN

∑
l

e−βN E N
l |l; N〉〈l; N | (29)

where ZN = ∑
l exp(−βN E N

l ).
We have implemented the TD-NRG algorithm [15]

recursively by going backwards from m to m − 1. For each
backward iteration, we perform the following steps:

(i) calculate the reduced density matrix in the basis of Hi
m

using equation (40) in [15]
(ii) calculate ρ ′

r,s (m + 1, t ′) according to equation (22)
(iii) calculate ρ̃red

r,s (m, t ′) using the recursion equation (21)
(iv) combine ρ̃red

r,s (m, t ′) and ρred
r,s (m + 1) to a single reduced

density matrix
(v) evaluate the contribution of iteration m to the excitation

spectrum obtained by Fourier transform equation (23)
(vi) steps (i)–(v) are repeated until we reach the iteration mmin

at which no state was eliminated.

While the selection of retained states in the NRG run for
Hi is determined by the density matrix [12], the selection of
states of Hf is guided by the notion of maximizing the overlap
with the eigenstates of Hi. Amongst the different truncation
schemes that we have implemented, the simplest was the most
effective [14, 15]. In this truncation scheme, we selected the
lowest eigenstates of Hf

m at the end of each iteration m as well.
In [19] the current through a nanodevice coupled to two

leads is investigated as a function of the finite applied bias
using the algorithm for the NEQ spectral function presented
here. The device is described by a two-band model. Each band
representing the bath continuum for either left or right-moving
scattering states will be set to a different chemical potential μα ,
α = L, R. The potential different V = μR − μL drives a finite
current through the nanodevice. In this case, the NRG run for
Hi obtains a faithful many-body representation of the density
operator of the non-interaction problem (U = 0)

ρ̂0 ∝ e−β(Hi−Ŷ0) (30)

where operator [21]

Ŷ0 =
∑

α

μα Nα (31)

replaces the usual number operator for a grand canonical
ensemble in order to include the different potentials μα of the
scattering states.

After each iteration for Hf
m , one would like to retain the

states with the largest overlap with the eigenstates of Hi
m .

These eigenstates of Hf are generally expected to be connected
to the eigenstates of Hi of the same eigenenergy relative to the
ground state by the Lippmann–Schwinger equation for a model
with a continuous bath. In practice, we select those eigenstates
of Hf

m which have the lowest diagonal matrix elements of the
operator Hf

m − Ŷ0. Therefore, the eigenenergies Es of Hf
m can

be divided into two contributions

Es = �Es +
∑

α

μαns
α. (32)

The first term �Es is of the order �−m/2 due to the truncation
scheme, and the second term is defined by

〈s|Ŷ0|s〉 =
∑

α

μαns
α =

∑
α

μα〈s|N̂α |s〉. (33)

The question of the distribution and magnitude of the
excitation energies �Ers = Em

r − Em
s entering equation (23)

arises in order to understand the redistribution of spectral
weight at finite bias. �Ers involves eigenenergies of Hf

m and is
given by

�Ers = �Er − �Es +
∑

α

μα

(
nr

α − ns
α

)
. (34)

The single-particle spectral function is obtained from
equation (23) by setting A = fσ and B = f †

σ . Only those
states r and s can contribute to the spectral function whose
total number of particles differs by exactly one electron, i.e.

∑
α

(
nr

α − ns
α

) = ±1. (35)

Substituting equation (35) into (34) yields the two equivalent
ways of writing the excitation energies

�Ers = �Er − �Es + (μR − μL)
(
nr

R − ns
R

) ± μL (36)

= �Er − �Es + (μL − μR)
(
nr

L − ns
L

) ± μR. (37)

For models with a channel conservation law, |(nr
α −ns

α)| =
0, 1 must hold. As a consequence, the excitation energies
�Ers are centered around the two chemical potentials μα. For
interacting quantum impurity models which violate channel
conservation [21, 19], the differences |�Nrs

α | are given by
arbitrary numbers. By inserting a finite value of (nr

α − ns
α)

into equation (36) or (37), it becomes apparent that the energy
difference �Ers will be shifted away from either chemical
potential by multiples of the chemical potential differences
V = μL − μR [21, 19].

A word is in order concerning the frequency resolution.
In the usual equilibrium NRG the lowest resolvable
frequency [13] coincides with the temperature TN ∝ �−N/2

set by the length of the Wilson chain. The non-equilibrium
Green functions G(t, t ′) depend on two different times. The
Fourier transformation with respect to relative time t remains
meaningful even in the limit t ′ → ∞, since the steady-state

6



J. Phys.: Condens. Matter 20 (2008) 195216 F B Anders

density operator ρ̂∞ exists and is well defined by equation (24).
However, the smallest excitation energy resolved might be
larger than ωN ≈ �−N/2 due to the difference between
ρ̂TD-NRG∞ obtained via equation (24) and the exact steady-state
density operator for a bath continuum. Depending on the
bias V and values of U , the lower boundary for frequency
resolution increases to ωlow ≈ �−m/2 which typically changes
m = N −1 to m = N −3. In all cases, we investigated in [19],
the bias V remains significantly larger than ωlow.

3. Results

3.1. The single-impurity Anderson model

In order to demonstrate the potential of this approach, we
will present results for the single-particle spectral functions
of the single-impurity Anderson model (SIAM) for which the
equilibrium spectral functions are well studied [38–40, 13, 18]
and can serve as benchmarks.

The Hamiltonian of the SIAM [41, 25, 26]

H =
∑
kσ

εkσ c†
kσ ckσ + Himp + V

∑
kσ

(
c†

kσ fσ + f †
σ ckσ

)
(38)

Himp = H0 + HU

=
∑

σ

(
εf + U

2
− σ

2
H

)
f †
σ fσ + U

2

(∑
σ

nf
σ − 1

)2

=
∑

σ

(
εf − σ

2
H

)
f †
σ fσ + Unf

↑nf
↓ (39)

HU = U

2

(∑
σ

nf
σ − 1

)2

(40)

consists of a single local state, which we will denote by
f , with energy εf and Coulomb repulsion U , coupled to a
bath of conduction electrons with creation operators c†

kσ and
energies εkσ . The local level is subject to a Zeeman splitting
in an external magnetic field H . Note that the single-particle
term of the impurity Hamiltonian Himp can be written in
two different ways, i.e. the last two lines of equation (39)
which allows for a conventional interaction term—last line
of equation (39)—or a non-interaction term containing the
Hartree contribution and a particle–hole preserving interaction
term HU [25, 26]. To obtain a continuous spectral function
from the set of discrete δ-functions occurring in G A,B(z), the
occurring δ(ω − ωn) functions are replaced by a Gaussian
broadening on a logarithmic mesh

δ(ω − ωn) → e−b2/4

bωn
√

π
exp

{
−

(
ln(ω/ωn)

b

)2
}

(41)

where b ranges typically between 0.6 � b < 1.2 [42, 18, 13].
The Fourier transformation of the Green function

Gr
A,B(t, t ′) with respect to t obeys the equation of motion

zGr
A,B(z, t ′) = Tr

[
ρ̂(t ′)[A, B]s

] + Gr
[H,A],B (z, t ′) (42)

for any time t ′ and a time-independent Hamiltonian Hf. (Note
that a time-dependent Hf(t) yields the usual integral equation,
and equation (42) would not hold.)

By setting A = fσ and B = f †
σ , Bulla et al derived a

simple but exact relation between two Green functions and the
correlation self-energy [39]

�U
σ (z, t ′) = U

Gr
fσ n−σ , f †

σ

(z, t ′)

Gr
fσ , f †

σ

(z, t ′)
(43)

which is used to express the retarded Green function as

Gr
fσ , f †

σ
(z, t ′) =

[
z − εf − σ

2
H − �σ(z) − �U

σ (z, t ′)
]−1

,

�σ (z) = 1

N

∑
k

V 2

z − εkσ

. (44)

We have calculated the Green functions Gr(N RG)

fσ n−σ , f †
σ

(z, t ′)

and Gr(N RG)

fσ , f †
σ

(z, t ′) in the steady-state limit t ′ → ∞ and

have obtained the physical Green function via the equation of
motion (44) and (43).

As long as not otherwise stated, all energies are measured
in units of � = πV 2ρ(0), and a constant band width [12]
of ρ(ω) = 1/(2D)�(D − |ω|) is used with D/� = 20.
The number of kept states after each NRG iteration was
Ns = 2000. To check the accuracy, we calculated the
sum-rule of the raw NRG spectral function by integrating
the δ-peaks analytically and confirmed that for arbitrary
parameters and number of states the sum-rule for the steady-
state spectral function is fulfilled within a machine precision
of 10−15. The algorithm itself combines the time-dependent
NRG [14, 15] implementation with the calculation of the sum-
rule conserving spectral functions as discussed elaborately
in [18].

3.2. Particle–hole symmetry

3.2.1. External magnetic field H = 0. In figure 1, the
steady-state spectral functions for a particle–hole symmetric
regime are compared with the equilibrium solution obtained
directly from the standard NRG procedure [18]. In these
calculations, the Hartree term U/2 has been absorbed into Hi.
At time t ′ = 0, the Coulomb interaction HU is switched on.
An excellent agreement between the equilibrium NRG result
(dashed lines) and the long-time limit of the time-evolved
spectral functions (solid lines) is found. The non-interacting
resonant-level spectral function centered around ω = 0 evolves
continuously into the Green function for a SIAM with finite
U . The inset in figure 1 shows small deviations between the
reference equilibrium spectra for H = Hf and the steady-state
spectra obtained from the Fourier transform of equation (25) in
the Kondo regime. Note that the exponentially small Kondo
scale not accessible to perturbation theories in U is always
accounted for correctly within the NRG and, therefore, in
our algorithm by the crossover to the fixed-point spectrum of
Hf [25, 26]. With increasing values of U and fixed �, the peak
height decreases from its theoretical unitary limit of 1/(π�).
The deviations are less that 1% for U = 2 and increase to
approximately 11% for U = 10. The correct low-energy
scale [25, 13] TK proportional to the width of the resonance
at ω = 0 emerges as well in the steady-state spectral functions.
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Figure 1. Comparison of the spectral function for the six different
values of U for the symmetric case εf = −U/2. The steady-state
spectral function, obtained from switching HU = 0 to a finite value is
plotted as a straight line, while the direct equilibrium calculation [18]
is given by dashed lines of the same color for the same parameters.
The inset shows the resonance in the vicinity of the chemical
potential. The dashed line in the inset indicates the unitary limit of
1/(π�). NRG parameters: �/D = πV 2ρ0/D = 0.05,� = 2, NS =
2000, b = 0.6, T → 0.

We investigated also the impact of the initial level position
εi

f on the steady-state spectra. A different starting point for
U = 0 could be the traditional way of writing the impurity
Hamiltonian Himp = ∑

σ (εf − σ
2 H ) f †

σ fσ + Unf
↑nf

↓ which is
identical to (39). Here, the Hartree term U/2 is not absorbed
into the single-particle energy and the Coulomb repulsion term
HU = Unf

↑nf
↓ is switched on at t ′ = 0.

The results for this starting point are presented in figure 2.
The steady-state spectra show an increasing deviation from the
correct thermodynamic equilibrium spectrum which remains
pinned at 1/π for all values of U in accordance with the density
of state sum-rule [43, 44]. All steady-state spectra remain
particle–hole symmetric, guaranteed by Hf, and the high-
energy features are well reproduced. However, we observe
deviations from the correct Abrikosov–Suhl resonance (ASR)
even for moderate values of U > 2�. For large values of U ,
the ASR is almost absent in the steady-state spectra.

The difference can be understood in the following way. By
absorbing the Hartree term into the initial Hamiltonian Hi, the
average impurity occupation 〈nf〉 does not change with time.
Hi and Hf will flow to the same strong-coupling fixed point
for T → 0. The excellent agreement between the equilibrium
reference spectrum and the steady-state spectrum can be seen
in figure 1.

In figure 2, however, we have started with a non-
interacting Hamiltonian which breaks particle–hole symmetry:
the level position is located at εf = −U/2. For increasing
values of U/� > 1, it corresponds to a doubly occupied
level as the starting configuration while the final spectra must
be particle–hole symmetric for εf = −U/2. The strong-
coupling fixed point of Hi is characterized by an additional
marginal operator which is proportional to the strength of the
particle–hole symmetry breaking [26]. For energies larger
than the characteristic energy scale TK, a good agreement

Figure 2. Comparison of the spectral function for the six different
values of U for the symmetric case εf = −U/2. The Hartree term
U/2 is absent in the Hamiltonian of Hi, and the Coulomb interaction
HU = Unf

↑nf
↓ = Hf − Hi is switched on at t ′ = 0. The steady-state

spectral functions are plotted as solid lines, while the direct
equilibrium calculation [18] yields the dashed lines for the same
parameters. The colors (color online) are identical for the same
values of U . The inset shows the resonance in the vicinity of the
chemical potential. NRG parameters: as in figure 1.

is found for the high-energy parts of the spectrum which is
determined mainly by the mean occupation. However, the low-
energy spectrum, which contains information on the many-
body resonance, deviates increasingly with increasing values
of U from the reference curve.

3.2.2. Finite external magnetic field. The particle–hole
symmetry, present at H = 0 is broken at a finite magnetic field.
In figure 3(a), a comparison is shown between the equilibrium
spectral functions (dashed lines) and ρ(ω, t ′ → ∞) obtained
after switching on a finite value of U in a fixed and finite
magnetic field of H = 0.2. The position and height of the
many-body resonance is well reproduced. The small deviations
for the equilibrium values increase with increasing value of U .
A shift in spectral weight from negative to positive frequencies
of the majority spectrum at large values of U indicates a
slight underestimation of the spin-polarization for values of
U � 8. Due to the total spin conservation of the Hamiltonian,
a relaxation of the total magnetization is prohibited. This
is the source of additional small deviations [14, 15] besides
discretization errors in the finite-size representation of the
infinitely large system.

Alternatively, we have kept U fixed and switched on a
finite magnetic field H at t ′ = 0, as depicted in figure 3
(b). Again, the equilibrium spectra are well reproduced by
ρ(ω, t ′ → ∞).

3.3. Particle–hole asymmetric regime

The influence of the initial level position εi
f on the steady-

state spectra is depicted in figure 4 for local particle–hole
asymmetric parameters εf

f = −2.4 and U = 8. Again,
we start initially with U = 0. For variation of εi

f which

8
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Figure 3. Comparison (a) of the majority spin spectral function for
the six different values of U for the symmetric case εf = −U/2 at a
fixed finite magnetic field H = 0.2. The color coding and NRG
parameters are identical to those in figure 1. The steady-state spectral
functions, obtained by switching HU = 0 to a finite value are plotted
as straight lines, while the direct equilibrium calculation [18] is given
by the dashed lines with the same color for the same Hf. In (b)
U/� = 8 and εf/� = −4 has been kept constant while the external
magnetic field is switched on. The inset shows the resonance in the
vicinity of the chemical potential. NRG parameters: as in figure 1.

changes the level occupancy nf very moderately, the steady-
state spectral function shows only marginal changes. We
observe a significant deviation from the equilibrium NRG
spectral function only for a large negative initial value of
εi

f /� = −3, for which the impurity is essentially doubly
occupied. Although the shape and position of the high-
energy excitation maxima are well reconstructed in this case,
the strongly reduced spectral weight of the low-frequency
resonance close to the chemical potential requires additional
spectral weight at high energies, a consequence of the sum-rule
conserving algorithm.

Particle–hole asymmetric spectral functions are displayed
in figure 5 for three different values of U . Here, we have
chosen the non-interaction resonant-level model Hi such that
the low-temperature fixed-point spectra are identical to those
of Hf.

Since the algorithm always evaluates the spectral function
at a finite temperature defined by TN ∝ �−N/2 of the last NRG
iteration [12, 25, 26, 13] we can also track the temperature

Figure 4. Influence of the initial value of the level position in Hi on
the steady-state spectrum for a fixed value of U = 8. The initial level
position εf has been set to ε i

f/� = −3,−0.2,−0.1, 0, 0.1, 0.2. The
black dashed line shows the equilibrium NRG spectra for the small
parameters as Hf. The inset shows the resonance in the vicinity of
the chemical potential. NRG parameters: as in figure 1.

Figure 5. Comparison of the spectral function for the three different
values of U for the asymmetric case. The initial level position εf has
been set to ε i

f = 0.235, 0.21, 0.175 and εf
f = −2.4. The inset shows

the resonance in the vicinity of the chemical potential. NRG
parameters: as in figure 1.

evolution of the spectra. For one set of parameters used
in figure 5, such a temperature evolution of the steady-state
spectra is shown in figure 6. Dashed and solid lines of
equal color (color online) correspond to the same temperature.
Figure 6 clearly demonstrates that the steady-state algorithm
can be used for the temperature evolution of spectral functions
as well.

4. Conclusion and outlook

We have presented a new algorithm to calculate non-
equilibrium Green functions G(t, t ′) for quantum impurity
models. It is derived using the complete basis set for the Wilson
NRG chain [14, 15]. Therefore, the spectral sum-rule is always
fulfilled exactly, independent of the number Ns of kept states

9



J. Phys.: Condens. Matter 20 (2008) 195216 F B Anders

Figure 6. Comparison of the steady-state spectra (solid line) for a
fixed value of U = 8 and εf = −2.4 evolved from U = 0 and the
thermodynamic equilibrium spectra (dashed line) for different values
of the temperature T/� = 0.66, 0.12, 0.02, 10−3. The initial level
position εf has been set to ε i

f/� = 0.175. The black dashed line
shows the equilibrium NRG spectra for the small parameters as Hf.
The inset shows the resonance in the vicinity of the chemical
potential. NRG parameters: as in figure 1.

after each NRG iteration. We have shown that the algorithm for
calculating equilibrium spectral functions [17, 18] is included
in our approach for the case of an unaltered Hamiltonian Hi =
Hf.

We believe, that this algorithm will open new doors for
theoretical calculations of non-equilibrium quantum systems.
In another publication [19], we have applied our method to a
non-equilibrium problem for which the answer is not known
a priori: an open quantum system comprising of a quantum
dot coupled to two leads whose chemical potential difference
drives a current through this interacting junction. Only for
the non-interacting problem (U = 0) is the exact solution
known [21]. However, by switching on the full Coulomb
repulsion HU at finite bias, the steady-state non-equilibrium
spectral function evolves from this initially known solution.
The steady-state currents through an interacting nanodevice
are accessible to the numerical renormalization group method
in the strong-coupling regime at finite bias. This method has
the advantage that it is applicable to any arbitrary coupling
strength, magnetic field and temperature. In contrast to
perturbative approaches it allows the study of the crossover
from the weak-coupling regime at high temperatures to the
strong-coupling regime at low temperatures and finite bias.

In this paper, we have restricted ourselves to the relevant
case of switching on a finite Coulomb repulsion U at t ′ = 0.
Focusing on the steady-state limit t ′ → ∞, we used the
well studied equilibrium spectral functions of the SIAM as
a benchmark for the steady-stated spectra obtained with our
method. Since a closed quantum impurity system will evolve
into its thermodynamic equilibrium [24], only if Himp + HI

is changed, the deviation between the steady-state and the
equilibrium spectra serves as a measure for the quality of the
algorithm.

We have shown that the steady-state spectral functions
agree excellently with the corresponding equilibrium spectra

even at finite magnetic field. The absorbing of the Hartree
term into the non-interacting part of the Hamiltonian yields
the best agreement between the steady-state spectra and the
equilibrium NRG spectra directly obtained from Hf. The
singly peaked spectrum of the resonant-level model evolves
into the typical three-peak structure of the SIAM in the Kondo
regime, with the lower-and high-frequency peaks resulting
from charge fluctuations and a narrow many-body Kondo
resonance emerging close to the chemical potential whose
width is proportional to the correct low-energy scale.
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No. HHB000 (FBA).

References

[1] Hewson A C 1993 The Kondo Problem to Heavy Fermions
(Cambridge: Cambridge University Press)

[2] Leggett A J, Chakravarty S, Dorsey A T and Fisher M P A
1987 Rev. Mod. Phys. 59 1

[3] Kastner M A 1992 Rev. Mod. Phys. 64 849
[4] Goldhaber-Gordon D, Shtrikman H, Mahalu D,

Abusch-Magder D, Meirav U and Kastner M 1998 Nature
391 156

[5] Manoharan H C, Lutz C P and Eigler D M 2000 Nature
403 512

[6] Agam O and Schiller A 2001 Phys. Rev. Lett. 86 484
[7] Pruschke Th, Jarrell M and Freericks J K 1995 Adv. Phys.

44 187
[8] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev.

Mod. Phys. 68 13 for a review on the DMFT
[9] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev.

Mod. Phys. 77 1027
[10] Kadanoff L P and Baym G 1962 Quantum Statistical

Mechanics (New York: Benjamin)
[11] Keldysh L V 1965 Sov. Phys.—JETP 20 1018
[12] Wilson K G 1975 Rev. Mod. Phys. 47 773
[13] Bulla R, Costi T and Pruschke T 2008 Rev. Mod. Phys. 80 395
[14] Anders F B and Schiller A 2005 Phys. Rev. Lett. 95 196801
[15] Anders F B and Schiller A 2006 Phys. Rev. B 74 245113
[16] Costi T A 1997 Phys. Rev. B 55 3003
[17] Weichselbaum A and von Delft J 2007 Phys. Rev. Lett.

99 076402
[18] Peters R, Pruschke T and Anders F B 2006 Phys. Rev. B

74 245114
[19] Anders F B 2008 Preprint 0802.0371
[20] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[21] Hershfield S 1993 Phys. Rev. Lett. 70 2134
[22] Oguri A 2007 Phys. Rev. B 75 035302
[23] Doyon B 2007 Phys. Rev. Lett. 99 076806
[24] Doyon B and Andrei N 2006 Phys. Rev. B 73 245326

10

http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.64.849
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1103/PhysRevLett.86.484
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.55.3003
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevB.74.245114
http://arxiv.org/abs/0802.0371
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.70.2134
http://dx.doi.org/10.1103/PhysRevB.75.035302
http://dx.doi.org/10.1103/PhysRevLett.99.076806
http://dx.doi.org/10.1103/PhysRevB.73.245326


J. Phys.: Condens. Matter 20 (2008) 195216 F B Anders

[25] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys.
Rev. B 21 1003

[26] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys.
Rev. B 21 1044

[27] Yamada K 1974 Prog. Theor. Phys. 53 970
[28] Yamada K 1975 Prog. Theor. Phys. 54 316
[29] Yamada K and Yoshida K M 1978 Prog. Theor. Phys. 59 1061
[30] Kondo J 1962 Prog. Theor. Phys. 28 864
[31] Anders F B 2005 Phys. Rev. B 71 121101
[32] Cragg D M and Lloyd P 1979 J. Phys. C: Solid State Phys.

12 3301
[33] Pang H B and Cox D L 1991 Phys. Rev. B 44 9454
[34] Bulla R, Tong N and Vojta M 2003 Phys. Rev. Lett. 91 170601
[35] Bulla R, Lee H J, Tong N H and Vojta M 2005 Phys. Rev. B

71 045122

[36] Anders F B, Bulla R and Vojta M 2007 Phys. Rev. Lett.
98 210402

[37] Glossop M T and Ingersent K 2005 Phys. Rev. Lett.
95 67202

[38] Costi T A, Hewson A C and Zlatic V 1994 J. Phys.: Condens.
Matter 6 2519

[39] Bulla R, Hewson A C and Pruschke T 1998 J. Phys.: Condens.
Matter 10 8365

[40] Bulla R, Costi T A and Vollhardt D 2001 Phys. Rev. B
64 045103

[41] Anderson P W 1961 Phys. Rev. 124 41
[42] Sakai O, Shimizu Y and Kasuya T 1989 J. Phys. Soc. Japan

58 3666
[43] Langreth D C 1966 Phys. Rev. 150 516–8
[44] Anders F B, Grewe N and Lorek A 1991 Z. Phys. B 54 293

11

http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1044
http://dx.doi.org/10.1143/PTP.53.970
http://dx.doi.org/10.1143/PTP.54.316
http://dx.doi.org/10.1143/PTP.59.1061
http://dx.doi.org/10.1103/PhysRevB.71.121101
http://dx.doi.org/10.1088/0022-3719/12/16/018
http://dx.doi.org/10.1103/PhysRevB.44.9454
http://dx.doi.org/10.1103/PhysRevLett.91.170601
http://dx.doi.org/10.1103/PhysRevB.71.045122
http://dx.doi.org/10.1103/PhysRevLett.98.210402
http://dx.doi.org/10.1103/PhysRevLett.95.067202
http://dx.doi.org/10.1088/0953-8984/6/13/013
http://dx.doi.org/10.1088/0953-8984/10/37/021
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1143/JPSJ.58.3666
http://dx.doi.org/10.1103/PhysRev.150.516

	1. Introduction
	2. Theory
	2.1. Complete basis set
	2.2. Derivation of the NRG non-equilibrium Green function
	2.3. Steady-state limit
	2.4. Recovering the sum-rule conserving equilibrium NRG Green function
	2.5. The non-equilibrium NRG algorithm

	3. Results
	3.1. The single-impurity Anderson model
	3.2. Particle--hole symmetry
	3.2.1. External magnetic field H=0 .
	3.2.2. Finite external magnetic field.

	3.3. Particle--hole asymmetric regime

	4. Conclusion and outlook
	Acknowledgments
	References

